MOVIMIENTO CIRCULAR  

 

 

Es un movimiento en el que la trayectoria recorrida por el móvil es una circunferencia. A veces el movimiento circular no es completo: cuando un coche o cualquier otro vehículo toma una curva realiza un movimiento circular, aunque nunca gira los 360º de la circunferencia.

 

http://upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Circular_motion.svg/280px-Circular_motion.svg.png

 

 

EL MOVIMIENTO CIRCULAR EN MAGNITUDES ANGULARES.- La descripción de un movimiento circular puede hacerse bien en función de magnitudes lineales ignorando la forma de la trayectoria (y tendremos velocidad y aceleración tangenciales), o bien en función de magnitudes angulares (y tendremos velocidad y aceleración angulares).  Ambas descripciones están relacionadas entre sí mediante el valor del radio de la circunferencia trayectoria.

 

Al trabajar con magnitudes angulares es imprescindible entender lo relativo a una unidad de medida angular conocida como radián..

 

EL RADIÁN

 

x

Si tenemos un ángulo cualquiera y queremos saber cuánto mide, tomamos un transportador y lo medimos. Esto nos da el ángulo medido en grados. Este método viene de dividir la circunferencia en 360º, y se denomina sexagesimal.

(Para usar la calculadora en grados hay que ponerla en DEG, Degrees, que quiere decir grados en inglés).

 

El sistema de grados sexagesimales es una manera de medir ángulos, pero hay otros métodos, y uno de ellos es usando radianes.

Ahora veamos el asunto de medir los ángulos pero en radianes.

Para medir un ángulo en radianes se mide el largo del arco (s) abarcado por el ángulo θ de la figura a la izquierda. Esto se puede hacer con un centímetro, con un hilito o con lo que sea. También se mide el radio del círculo.

Para obtener el valor del ángulo (θ) en radianes usamos la fórmula:

movimiento_circular008 y tenemos el ángulo medido en radianes

Hacer la división del arco sobre radio significa ver cuántas veces entra el radio en el arco. Como el radio y el arco deben medirse en la misma unidad, el radián resulta ser un número sin unidades.

 

Esto significa que el valor del ángulo en radianes solo me indica cuántas veces entra el radio en el arco. Por ejemplo, si el ángulo θ mide 3 radianes, eso significa que el radio entra 3 veces en el arco abarcado por ese ángulo.

Su quisiéramos calcular o conocer al valor del arco, hacemos:

movimiento_circular009

x

¿Cuántas veces entra el radio en el arco marcado?

 ¿A cuántos grados equivale un radián?

Pero el valor de un ángulo en radianes se puede expresar (convertir) en grados. En una circunferencia entera (360º) el arco entero es el perímetro, que es igual a 2 Pi por radiomovimientio_circular010. Así, a partir de la fórmula  
 
movimiento_circular008es que 360° equivalen a:

movimiento_circular011

Un ángulo de un radián equivale a un ángulo de 57,3º.  Para usar la calculadora en radianes hay que ponerla en "RAD"

 

PERIODO Y FRECUENCIA.- La principal característica del movimiento circular uniforme es que en cada vuelta o giro completo de 360°, equivalente a un ciclo, se puede establecer un punto fijo como inicio y fin del ciclo. En física, los ciclos son también llamados revoluciones para un determinado tiempo.

 

EL PERIODO (T) de un movimiento circular es el tiempo que tarda una partícula o un cuerpo en realizar una vuelta completa, revolución o ciclo completo.  Por ejemplo, el periodo de rotación de la tierra es 24 horas. El periodo de rotación de la aguja grande del reloj es de 1 hora. La unidad utilizada para el periodo es el segundo o, para casos mayores, unidades mayores.

Conocida la frecuencia (en ciclos o revoluciones por segundo) se puede calcular el periodo (T) mediante la fórmula:

moviminto_circular012

 

FRECUENCIA (F) de un movimiento circular al número de revoluciones, vueltas o ciclos completos durante la unidad de tiempo. La unidad utilizada para cuantificar (medir) la frecuencia de un movimiento es el Hertz (Hz), que indica el número de revoluciones o ciclos por cada segundo.

Para su cálculo, usamos la fórmula

movimiento_circular013o Hertz:

 

(En ocasiones se usa, en vez de Hertz, seg −1  ó  s −1 ). Nótese que la frecuencia (F) es la inversa del periodo (T).

 

 

 

Una vez situado el origen O describimos el movimiento circular mediante las siguientes magnitudes angulares.

 

 

x

Imaginemos el punto rojo (P) como una piedra que gira amarrada al punto C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

·         POSICIÓN ANGULAR (θ)

Podemos imaginar, como ejemplo, que se tiene una piedra amarrada a una cuerda y la movemos en círculos de radio r.  En un instante de tiempo t el móvil (en nuestro caso la piedra) se encuentra en el punto P. Su posición angular (lo que la piedra ha recorrido en la circunferencia) viene dada por el ángulo θ, formado por el punto P, el centro de la circunferencia C y el origen O (desde donde empezó a girar la piedra).

 

·         DESPLAZAMIENTO ANGULAR (θ).- El vector posición r de la partícula se desplaza un ángulo “θ” en un tiempo “t”.

En el Sistema Internacional se mide en radianes

 

 

 

VELOCIDAD ANGULAR (ωm).- Resulta de dividir el desplazamiento angular θ entre el tiempo empleado en su giro. Cuando un objeto se mueve en una circunferencia, llevará una velocidad, ya que recorre un espacio, pero también recorre un ángulo.

Para tener una idea de la rapidez con que algo se está moviendo con movimiento circular, se ha definido la velocidad angular (ω) como el número de vueltas que da el cuerpo por unidad de tiempo.

 

Si un cuerpo tiene gran velocidad angular quiere decir que da muchas vueltas por segundo.  De manera sencilla: en el movimiento circular la velocidad angular está dada por la cantidad de vueltas que un cuerpo da por segundo.

 

Otra manera de decir lo mismo sería: en el movimiento circular la velocidad angular está dada por el ángulo recorrido (θ) dividido por unidad de tiempo. El resultado está en grados por segundo o en rad por segundo.

 

ωm = θ/t

 

movimineto_circular014

movimiento_circular015
ω = velocidad angular en rad/seg.

θ = desplazamiento angular en rad.

t = tiempo en segundos en que se efectuó el desplazamiento angular.

La velocidad angular también se puede determinar si sabemos el tiempo que tarda en dar una vuelta completa o periodo (T):

movimiento_circular016

Comomovimiento_circular017  entonces movimiento_circular018 

x

Trasmisión de un movimiento circular.

 

Aquí debemos apuntar que una misma velocidad angular se puede expresar de varias maneras diferentes.

Por ejemplo, para las lavadoras automáticas o para los motores de los autos se usan las revoluciones por minuto (rpm). También a veces se usan las rps (revoluciones por segundo).

También se usan los grados por segundo y los radianes por segundo.

Es decir, hay muchas unidades diferentes de velocidad angular. Todas se usan y hay que saber pasar de una a otra, lo que se hace aplicando una regla de 3 simple.

Por ejemplo, pasar una velocidad de 60 rpm a varias unidades diferentes:

movimiento_circular019

La más importante de todas las unidades de velocidad angular es radianes por segundo. Esta unidad es la que se usa en los problemas.

Nota importante:

Según lo anterior es correcto, entonces, decir que la velocidad angular es

movimiento_circular020, pero resulta que el radián es sólo un número comparativo, por lo mismo que la palabra radián suele no ponerse y en la práctica la verdadera unidad esmovimiento_circular021, que también puede ponerse comomovimiento_circular022, e incluso comomovimiento_circular023
En efecto, muchas veces la velocidad angular se expresa en segundos elevado a menos uno (
movimiento_circular023) y para quienes no lo saben resulta incomprensible.

 

En el S.I. se mide se mide en rad/s

 

 

ACELERACIÓN ANGULAR MEDIA (αm).- Es el cambio o variación de la velocidad angular en la unidad de tiempo.

 αm = ωf – ωo

                           t

·         LA VELOCIDAD TANGENCIAL O LINEAL (v).- Aparte de la velocidad angular, también es posible definir la velocidad lineal de un móvil que se desplaza en círculo.

 

Por ejemplo, imaginemos un disco que gira. Sobre el borde del disco hay un punto que da vueltas con movimiento circular uniforme.

 

Ese punto tiene siempre una velocidad lineal que es tangente a la trayectoria. Esa velocidad se llama velocidad tangencial.

 

Para calcular la velocidad tangencial hacemos: espacio recorrido sobre la circunferencia (o arco recorrido) dividido por el tiempo empleado, que expresamos con la fórmula:

movimiento_circular024pero como movimiento_cvircular025 entonces movimiento_circular049 que se lee velocidad tangencial es igual a velocidad angular multiplicada por el radio.

Como la velocidad angular (ω) también se puede calcular en función del periodo (T) con la fórmula movimiento_circular016y la velocidad tangencial siempre está en función del radio, entonces la fórmula movimiento_circular049se convierte en movimiento_circular050que se lee: la velocidad tangencial es igual a 2 pi multiplicado por el radio (r) y dividido por el periodo (T).

Además, como ω (velocidad angular) se expresa en movimiento_circular021 y el radio se expresa en metros, las unidades de la velocidad tangencial serán metros por segundo (m/s).

·         RELACIÓN ENTRE LA VELOCIDAD ANGULAR Y LA VELOCIDAD LINEAL O TANGENCIAL.

vm= ωm. r

·         Relación entre aceleración angular y tangencial.-

am= αm.r

 

 

 

 

TIPOS DE MOVIMIENTO CIRCULAR

A)  MOVIMIENTO CIRCULAR UNIFORME M.C.U..- Es cuando el móvil gira con velocidad angular constante.   Si lo que gira da siempre el mismo número de vueltas por segundo, decimos que posee movimiento circular uniforme.

Ejemplos de cosas que se mueven con movimiento circular uniforme hay muchos: La tierra es uno de ellos. Siempre da una vuelta sobre su eje cada 24 horas. También gira alrededor del sol y da una vuelta cada 365 días. Un ventilador, un lavarropas o los viejos tocadiscos, la rueda de un auto que viaja con velocidad constante, son otros tantos ejemplos.

 

ω = θ/t

θ = ω .t

B)   MOVIMIENTO CIRCULAR UNIFORMEMENTE VARIADO M.C.U.V..-  Es cuando el móvil gira con variación de su velocidad angular a causa de la aceleración angular. Las ecuaciones que se cumplen son muy parecidas que en el M.R.U.V.

 

ωf = ωo  + α.t

 

ωf2 = ωo2  + 2α.θ

 

θ = ωot   +  α.t2

               2

θ = (ωf -  ωo).t

                   2

LA ACELERACIÓN EN LOS MOVIMIENTOS CURVILÍNEOS

 

x

Las ruedas se mueven con movimiento circular.

En los movimientos curvilíneos o circulares la dirección cambia a cada instante. Y debemos recordar que la velocidad considerada como vector v podrá variar (acelerar o decelerar) cuando varíe sólo su dirección, sólo su módulo o, en el caso más general, cuando varíen ambos.

 

La aceleración asociada a los cambios en dirección

En razón de la aseveración anterior, y desde un punto de vista sectorial (distancia), un movimiento circular uniforme es también un movimiento acelerado, aun cuando el móvil recorra la trayectoria a ritmo constante.

La dirección del vector velocidad, que es tangente a la trayectoria, va cambiando a lo largo del movimiento, y esta variación de v que afecta sólo a su dirección da lugar a una aceleración, llamada aceleración centrípeta.

 

ACELERACIÓN CENTRÍPETA.- Cuando se estudió la aceleración en el movimiento rectilíneo, dijimos que ella no era más que el cambio constante que experimentaba la velocidad por unidad de tiempo. En este caso, la velocidad cambiaba únicamente en valor numérico (su módulo o rapidez), no así en dirección.

Ahora bien, cuando el móvil o la partícula realiza un movimiento circular uniforme, es lógico pensar que en cada punto el valor numérico de la velocidad (su módulo) es el mismo, en cambio es fácil darse cuenta de que la dirección del vector velocidad va cambiando a cada instante.

 

La variación de dirección del vector lineal origina una aceleración que llamaremos aceleración centrípeta. Esta aceleración tiene la dirección del radio y apunta siempre hacia el centro de la circunferencia.

Como deberíamos saber, cuando hay un cambio en alguno de los componentes del vector velocidad tiene que haber una aceleración. En el caso del movimiento circular esa aceleración se llama centrípeta, y lo que la provoca es el cambio de dirección del vector velocidad angular.

 

x

Aceleración centrípeta.

Veamos el dibujo de la derecha:

El vector velocidad tangencial cambia de dirección y eso provoca la aparición de una aceleración que se llama aceleración centrípeta, que apunta siempre hacia el centro.

La aceleración centrípeta se calcula por cualquiera de las siguientes dos maneras:

movimiento_circular026

 

 

LA ACELERACIÓN ASOCIADA A LOS CAMBIOS EN SU MÓDULO (RAPIDEZ)

 

Ya sabemos que un movimiento circular, aunque sea uniforme, posee la aceleración centrípeta debida a los cambios de dirección que experimenta su vector velocidad. Ahora bien, si además la velocidad del móvil varía en su magnitud (módulo) diremos que además posee aceleración angular.

 

Resumiendo: si un móvil viaja en círculo con velocidad variable, su aceleración se puede dividir en dos componentes: una aceleración de la parte radial (la aceleración centrípeta que cambia la dirección del vector velocidad) y una aceleración angular que cambia la magnitud del vector velocidad, además de una aceleración tangencial si consideramos solo su componente lineal. 

 

Como corolario, podemos afirmar que un movimiento circular uniforme posee solo aceleración centrípeta y que un movimiento circular variado posee aceleración centrípeta y, además, aceleraciones angular y tangencial.

 

ACELERACIÓN ANGULAR.- Tal como el movimiento lineal o rectilíneo, el movimiento circular puede ser uniforme o acelerado. La rapidez de rotación puede aumentar o disminuir bajo la influencia de un momento de torsión resultante.

La aceleración angular (α) se define como la variación de la velocidad angular con respecto al tiempo y está dada por:

movimiento_circular027

donde:

α = aceleración angular final en rad/ s2

ωf = velocidad angular final en rad/s

ωi = velocidad angular inicial en rad/s

t = tiempo transcurrido en seg

Una forma más útil de la ecuación anterior es:

ωf = ωi + α t

 

ACELERACIÓN TANGENCIAL.- Imaginemos de nuevo un disco que gira. Sobre el borde del disco hay un punto que da vueltas con movimiento circular acelerado.

Ese punto tiene siempre una velocidad variada que es tangente a la trayectoria. Esa variación de velocidad se llama aceleración tangencial.

Es la aceleración que representa un cambio en la velocidad lineal, y se expresa con la fórmula

 

movimiento_circular028

Donde

α = valor de la aceleración angular en rad/s2

r = radio de la circunferencia en metros (m)

Entonces, la aceleración tangencial es igual al producto de la aceleración angular por el radio.

 

OTRAS FÓRMULAS USADAS EN EL MOVIMIENTO CIRCULAR

 

Vimos que la velocidad angular (ω) es igual al ángulo recorrido dividido por el tiempo empleado. Cuando el tiempo empleado sea justo un período (T), el ángulo recorrido será 2 pi (igual a una vuelta).

Entonces podemos calcular la velocidad angular (ω) como: movimiento_circular029

 

Pero comomovimiento_circular017, esta misma fórmula se puede poner como:

 

movimiento_circular031

 

EJERCICIOS:

 

 

 

Company News

10.08.2010

 

 

 

11.08.2010

 

 

 

fRACTALES